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Hybrid Parallelism for Volume Rendering on Large, 
Multi-core Platforms 

Overview 
  Traditional approaches for parallel                            

visualization may not work well in                                        
future: 100-1000 cores per node. 
•  Exascale machines will likely have                                              

O(1M) nodes 

  Hybrid-parallelism blends distributed- and shared-memory 
parallelism concepts. 

  This study: 
•  Does hybrid-parallelism work for volume rendering at extreme 

concurrency?  If so, how well? 
•  Experiment to compare performance shows favorable 

characteristics of hybrid-parallel, especially at very high 
concurrency. 

MPI-only

2010


“Not MPI-only”
?’s: 
 Will MPI-only work? 

Hybrid possible? 
 Performance gains? 
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Parallelism 

  Mid 1970s-Early 1990s:  
•  Vector machines: Cray 1 ... NEC SX 
•  Vectorizing Fortran compilers help optimize a[i]=b[i]*x+c. 

  Early 1990s-present: 
•  The rise of the MPP based on the commodity 

microprocessor. Cray T3D, TM CM1, CM2, CM5, etc.  
•  Message Passing Interface (MPI) becomes the gold 

standard for building/running parallel codes on MPPs. 

  Mid 2000s-present: 
•  Rise of the multi-core CPU, GPU. AMD Opteron, Intel 

Nehalem, Sony Cell BE, NVIDIA G80, etc. 
•  Large supercomputers comprised of lots of multi-core 

CPUs. 
•  Shared memory programming on a node: pthreads, 

OpenMP; data parallel languages (CUDA); global  
shared memory languages (UPC) and utilities (CAF). 

  Early 1990s-Early 2000s: 
  Shared memory parallelism (e.g. SGI)  



5 

Related work in Hybrid Parallelism 

  Caveats 
•  Relatively new research area, not a great deal of published work. 
•  Studies focus on “solvers,” not vis/graphics. 
•  State of hybrid parallel visualization: lots of work to do 

  Fundamental questions: 
•  How to map algorithm onto a complex memory, communication hierarchy? 
•  What is the right balance of distributed- vs. shared-memory parallelism? 

How does balance impact performance? 
  Conclusions of these previous works: 

•  What is best? Answer: it depends. 
•  Many factors influence performance/scalability: 

•  Synchronization overhead. 
•  Load balance (intra- and inter-node). 
•  Communication overhead and patterns. 
•  Memory access patterns. 
•  Fixed costs of initialization. 
•  Number of runtime threads. 
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This Study 

  Hybrid parallelism on visualization: raycasting volume 
rendering. 
•  Ask same questions the HPC folks do: 

•  How to map algorithm to hybrid parallel space? 
•  How does performance compare with MPI-only implementation? 

  Hybrid-parallel implementation/architecture. 
  Performance study. 

•  Runs at 216K-way parallel 
•  Look at: 

•  Costs of initialization. 
•  Memory use comparison. 
•  Scalability. 
•  Absolute runtime. 
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Algorithm Studied: Raycasting VR 

  Overview of Levoy’s method 
•  For each pixel in image plane: 

•  Find intersection of ray and volume 
•  Sample data (RGBa) along ray, 

integrate samples to compute final 
image pixel color 
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Parallelizing Volume Rendering 

  Image-space decomposition. 
•  Each process works on a disjoint subset of the final image (in 

parallel) 
•  Processes may access source voxels more than once, will access 

a given output pixel only once. 
•  Great for shared memory parallelism. 

  Object-space decomposition. 
•  Each process works on a disjoint subset of the input data (in 

parallel). 
•  Processes may access output pixels more than once.  
•  Output requires image composition (ordering semantics). 
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Hybrid Volume Rendering 

  Hybrid volume rendering: 
•  Refers to mixture of object- and image-order techniques to do 

volume rendering. 
•  Most contemporary parallel volume rendering projects are hybrid 

volume renderers: 
•  Object order – divide data into disjoint chunks, each processor 

works on its chunk of data. 
•  Image order – parallel compositing algorithm divides work over 

final image, each composites over its portion of the final image. 
•  A two-stage algorithm, heavy communication load between 

stages. 
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Hybrid Parallel Volume Rendering 

  Hybrid-parallelism a blend of shared- and distributed-
memory parallelism. 

  Details of hybrid parallel implementation described on the 
next slide 
•  2 Implementations: pthreads, OpenMP. 

  Note the difference between hybrid parallel volume 
rendering and hybrid volume rendering 
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Hybrid Parallel Volume Rendering 

  Our hybrid-parallel architecture: 

Shared memory parallel


Distributed-memory parallel
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Our Experiment 

  Thesis: hybrid-parallel will exhibit favorable performance, 
resource utilization characteristics compared to traditional 
approach. 

  How/what to measure? 
•  Memory footprint, scalability characteristics, absolute runtime. 
•  Across a wide range of concurrencies. 

•  Remember: we’re concerned about what happens at extreme 
concurrency. 

•  Also varied view point to induce different memory access patterns. 
  Strong scaling study: hold problem size constant, vary 

amount of resources. 
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Experiment: Platform and Source Data 

  Platform: JaguarPF, a Cray XT5 system at ORNL 
•  18,688 nodes, dual-socket, six-core AMD Opteron (224K cores) 

  Source data: 
•  Combustion simulation results, hydrogen flame (data courtesy J. 

Bell, CCSE, LBNL) 
•  Effective AMR resolution: 10243, flattened to 5123, runtime 

upscaled to 46083 (to avoid I/O costs). 

  Target image size: 46082 image.  
•  Want approx 1:1 voxels to pixels. 

  Strong scaling study: 
•  As we increase the number of procs/cores,                                   

each proc/core works on a smaller-sized problem. 
•  Time-to-solution should drop.  
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Experiment – The Unit Test 

  Raycasting time: view/data dependent 
•  Execute from 10 different prescribed views: forces 

with- and cross-grained memory access patterns. 
•  Execute 10 times, result is average of all. 

  Compositing 
•  Five different ratios of compositing PEs to rendering 

PEs. 

  Measure: 
•  Memory footprint right after initialization. 
•  Memory footprint for data blocks and halo exchange. 
•  Absolute runtime and scalability of raycasting and 

compositing. 



15 

Absolute Runtime 

  -hybrid outperforms –only at every concurrency level.  
•  At 216K-way parallel, -hybrid is more than twice as fast as –only. 
•  Compositing times begin to dominate: communication costs. 
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Scalability – Raycasting Phase 

  Near linear scaling since no 
interprocess communication. 

  -hybrid shows sublinear 
scaling due to oblong block 
shape. 

  -only shows slightly better 
than linear due to reduced 
work caused by perspective 
foreshortening. 
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Scalability – Compositing  

  How many compositors to use? 
•  Previous work: 1K to 2K for 32K renderers (Peterka, 2009). 
•  Our work: above ~46K renderers, 4K to 8K works better. 
•  -hybrid cases always performs better: fewer messages. 
•  Open question: why the critical point? 



18 

Memory Use – Data Decomposition 

  16GB RAM per node 
•  Sets lower bound on concurrency for this problem size: 1728-way 

parallel (no virtual memory!). 

  Source data (1x), gradient field (3x) 
  Want cubic decomposition.  

•  1x2x3 block configuration per socket for –only. 

  -hybrid has ~6x data per socket than –only 
•  Would prefer to run study on 8-core CPUs to maintain cubic shape 
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Memory Use – MPI_Init() 

  Per PE memory: 
•  About the same at 1728, over 2x at 216000. 

  Aggregate memory use: 
•  About 6x at 1728, about 12x at 216000. 
•  At 216000, -only requires 2GB of memory for initialization per 

node!!! 
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Memory Use – Ghost Data 

  Two layers of ghost cells required for this problem: 
•  One for trilinear interpolation during ray integration loop. 
•  Another for computing a gradient field (central differences) for 

shading. 

  Hybrid approach uses fewer, but larger data blocks. 
•  ~40% less memory required for ghost data (smaller surface area) 
•  Reduced communication costs 



21 

Comparing our results to classic hybrid parallel factors 

  Factors in hybrid parallelism performance 
•  Synchronization overhead. 

•  Had two MPI tasks per node, not one, to prevent work spreading 
across CPU. 

•  Load balance (intra- and inter-node). 
•  Studied extensively, comes down to communication 

•  Communication overhead and patterns. 
•  Hybrid implementation naturally lends itself to superior communication 

pattern 
•  Memory access patterns. 

•  Not presented 
•  Fixed costs of initialization. 

•  Ghost data generation cost reduced with hybrid parallelism 
•  MPI initialization cost reduced with hybrid parallelism 

•  Number of runtime threads. 
•  Not studied 



3 Questions revisited 

  Seeing poor indicators @ 216K 
  Yes 
  Yes 
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MPI-only

2010


“Not MPI-only”
?’s: 
 Will MPI-only work? 

Hybrid possible? 
 Performance gains? 
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Summary of Results 

  Absolute runtime: -hybrid twice as fast as –only at 216K-
way parallel.  

  Memory footprint: -only requires 12x more memory for 
MPI initialization then –hybrid 
•  Factor of 6x due to 6x more MPI PEs. 
•  Additional factor of 2x at high concurrency, likely a vendor MPI 

implementation (an N2 effect). 
  Communication traffic: 

•  -hybrid performs 40% less communication than -only for ghost 
data setup. 

•  -only requires 6x the number of messages for compositing. 
  Image: 46082 image of a ~45003 dataset generated 

using 216,000 cores on JaguarPF in ~0.5s (not counting 
I/O time). 



Large Vector-Field Visualization, 
Theory and Practice: 

Large Data and Parallel Visualization 
Hank Childs + 

D. Pugmire, D. Camp, C. Garth,                     
G. Weber, S. Ahern, & K. Joy 

Lawrence Berkeley National Laboratory / 
University of California at Davis 

October 25, 2010 



Outline 

•  Motivation 
•  Parallelization strategies 
•  Master-slave parallelization 
•  Hybrid parallelism 



Outline 

•  Motivation 
•  Parallelization strategies 
•  Master-slave parallelization 
•  Hybrid parallelism 



Supercomputers are generating large data sets 
that often require parallelized postprocessing.  

217 pin reactor cooling simulation. 
Nek5000 simulation on ¼ of Argonne BG/P. 
Image credit: Paul Fischer using VisIt 

1 billion element 
unstructured mesh 



Communication between “channels” 
are a key factor in effective cooling. 



Particle advection can be used to 
study communication properties. 



This sort of analysis requires many 
particles to be statistically significant. 

Place thousands of particles 

in one channel


Observe which channels the

 particles pass through


Observe where particles come out 

(compare with experimental data) 


How can we parallelize 
this process? 

Repeat for other channels 
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Particle advection: 
Four dimensions of complexity 

Data set size 

vs 

Seed set distribution 

vs 

Seed set size 

vs 

Vector field complexity 



Do we need parallel processing?  
When?  How complex? 

•  Data set size?

•  Not enough!


•  Large #ʼs of particles?




Parallelization for small data and a 
large number of particles. 

Read Advect Render 

Processor 1 

Read Advect Render 

Processor 2 

Read Advect Render 

Processor 0 

Parallelized visualization 
data flow network 

File


Simulation 
code 

GPU-accelerated approaches 
follow a variant of this model. 

The key is that the data is small 
enough that it can fit in memory. 

This scheme is referred to as 
parallelizing-over-particles. 



Do we need advanced parallelization 
techniques?  When? 

•  Data set size?

•  Not enough!


•  Large #ʼs of particles?

•  Need to parallelize, but embarrassingly parallel OK


•  Large #ʼs of particles + large data set sizes




Parallelization for large data with 
good “distribution”. 
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This scheme is referred to as 
parallelizing-over-data. 



Do we need advanced parallelization 
techniques?  When? 

•  Data set size?

•  Not enough!


•  Large #ʼs of particles?

•  Need to parallelize, but embarrassingly parallel OK


•  Large #ʼs of particles + large data set sizes

•  Need to parallelize, simple schemes may be OK


•  Large #ʼs of particles + large data set sizes +                 
(bad distribution OR complex vector field)

•  Need smart algorithm for parallelization




Parallelization with big data & lots of 
seed points & bad distribution 

  Two extremes: 
•  Partition data over processors 

and pass particles amongst 
processors 
− Parallel inefficiency! 

•  Partition seed points over 
processors and process 
necessary data for advection 
− Redundant I/O! 

Notional streamline 
example 
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over data Hybrid algorithms 
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The master-slave algorithm is an 
example of a hybrid technique. 

•  “Scalable Computation of Streamlines on Very Large 
Datasets”, Pugmire, Childs, Garth, Ahern, Weber.  SC09 
•  Many of the following slides compliments of Dave Pugmire. 

•  Algorithm adapts during runtime to avoid pitfalls of 
parallelize-over-data and parallelize-over-particles. 
•  Nice property for production visualization tools. 

•  Implemented inside VisIt visualization and analysis 
package. 



Master-Slave Hybrid Algorithm 
•  Divide processors into groups of N 

•  Uniformly distribute seed points to each group 

Master: 
-  Monitor workload 
-  Make decisions to optimize 
resource utilization 

Slaves: 
-  Respond to commands 
from Master 
-  Report status when work 
complete 



Master Process Pseudocode 

Master() 
{ 
     while ( ! done ) 
     { 
          if ( NewStatusFromAnySlave() ) 
          { 
                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 
                      SendCommandToSlaves( cmd ) 
          } 
     } 
} 

What are the possible 
commands? 



Commands that can be issued by master 

Master Slave 

Slave is given a streamline that 
is contained in a block that is 
already loaded 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Slave is given a streamline 
and loads the block 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Load  

Slave is instructed to load a 
block. The streamline in that 
block can then be computed. 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Slave 

Send     to J 

Slave J 

Slave is instructed to send a 
streamline to another slave that 
has loaded the block 

Commands that can be issued by master 

1. Assign / Loaded Block 
2. Assign / Unloaded Block 

3. Handle OOB / Load 
4. Handle OOB / Send 

OOB = out of bounds 



Master Process Pseudocode 

Master() 
{ 
     while ( ! done ) 
     { 
          if ( NewStatusFromAnySlave() ) 
          { 
                 commands = DetermineMostEfficientCommand() 

                 for cmd in commands 
                      SendCommandToSlaves( cmd ) 
          } 
     } 
} * See SC 09 paper 

for details 



Master-slave in action 

P0 P0 

P1 

P1 
P2 

P2 P3 
P4 

Iteration Action 

0 P0 reads B0, 
P3 reads B1 

1 P1 passes 
points to P0, 
P4 passes 
points to P3, 
P2 reads B0 

0: Read 

0: Read 

Notional streamline 
example 

1: Pass 

1: Pass 
1: Read 

-  When to pass and when to read? 
-  How to coordinate communication?  Status?  
Efficiently? 



Algorithm Test Cases 

- Core collapse supernova simulation 
- Magnetic confinement fusion simulation 
- Hydraulic flow simulation 



Particles Data Hybrid 

Workload distribution in supernova 
simulation 

Parallelization by: 

Colored by processor doing integration 



Workload distribution in parallelize-over-
particles 

Too much I/O 



Workload distribution in parallelize-over-
data 

Starvation 



Workload distribution in hybrid algorithm 

Just right 



Comparison of workload distribution 



Astrophysics Test Case:  
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Astrophysics Test Case:  
Number of blocks loaded 
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Are today’s algorithms going to fit well on 
tomorrow’s machines? 

  Traditional approach for parallel 
visualization – 1 core per MPI task – may 
not work well on future supercomputers, 
which will have 100-1000 cores per node. 
•  Exascale machines will likely have                                              

O(1M) nodes … and we anticipate in situ 
particle advection. 

Hybrid parallelism blends distributed- and 
shared-memory parallelism concepts. 



The word “hybrid” is being used in two 
contexts… 

•  The master-slave algorithm is a hybrid algorithm, 
sharing concepts from both parallelization-over-data and 
parallelization-over-seeds. 

•  Hybrid parallelism involves using a mix of shared and 
distributed memory techniques, e.g. MPI + pthreads or 
MPI+CUDA. 

•  One could think about implement a hybrid particle 
advection algorithm in a hybrid parallel setting. 



What can we learn from a hybrid 
parallel study? 

•  How do we implement parallel particle advection 
algorithms in a hybrid parallel setting? 

•  How do they perform? 
•  Which algorithms perform better?  How much better? 
•  Why? 

Streamline Integration Using MPI-Hybrid 
Parallelism on a Large Multi-Core Architecture 

by David Camp, Christoph Garth,  
Hank Childs, Dave Pugmire and Ken Joy 

Accepted to TVCG  



Streamline integration using MPI-hybrid 
parallelism on a large multi-core architecture 

•  Implement parallelize-over-data and parallelize-over-
particles in a hybrid parallel setting (MPI + pthreads) 
•  Did not study the master-slave algorithm 

•  Run series of tests on NERSC Franklin machine (Cray) 
•  Compare        128 MPI tasks (non-hybrid)                                 

            vs   32 MPI tasks / 4 cores per task (hybrid) 
•  12 test cases:    large vs small # of seeds                                                       

          uniform vs non-uniform seed locations                    
                    3 data sets                                                            



Hybrid parallelism for parallelize-over-data 

•  Expected benefits: 
•  Less communication and communicators 
•  Should be able to avoid starvation by                  

sharing data within a group. 

Starvation 



Measuring the benefits of hybrid 
parallelism for parallelize-over-data 



Gantt chart for parallelize-over-data 



Hybrid parallelism for parallelize-over-
particles 

•  Expected benefits: 
•  Only need to read blocks once for node, instead of once 

for core. 
•  Larger cache allows for reduced reads 
•  “Long” paths automatically shared among cores on node 



Measuring the benefits of hybrid 
parallelism for parallelize-over-particles 



Gantt chart for parallelize-over-particles 



Summary of Hybrid Parallelism Study 

•  Hybrid parallelism appears to be extremely beneficial to 
particle advection. 

•  We believe the parallelize-over-data results are highly 
relevant to the in situ use case. 

•  Although we didn’t implement the master-slave algorithm, 
we believe the benefits shown at the spectrum extremes 
provide good evidence that hybrid algorithms will also 
benefit. 

•  Implemented on VisIt branch, goal to integrate into VisIt 
proper in the coming months. 



Summary for Large Data and 
Parallelization 

•  The type of parallelization required will vary based on 
data set size, number of seeds, seed locations, and 
vector field complexity 

•  Parallelization may occur via parallelization-over-data, 
parallelization-over-particles, or somewhere in between 
(master-slave).  Hybrid algorithms have the opportunity to 
de-emphasize the pitfalls of the traditional techniques. 

•  Hybrid parallelism appears to be very beneficial. 
•  Note that I said nothing about time-varying data… 


